
www.manaraa.com

International Journal of Advanced Robotic Systems

Control of a Quadrotor Using a
Smart Self-Tuning Fuzzy PID
Controller

Deepak Gautam1 and Cheolkeun Ha2,

The School of Mechanical Engineering, University of Ulsan

� cheolkeun@gmail.com

Abstract This paper deals with the modelling,
simulation-based controller design and path planning
of a four rotor helicopter known as a quadrotor. All the
drags, aerodynamic, coriolis and gyroscopic effect are
neglected. A Newton-Euler formulation is used to derive
the mathematical model. A smart self-tuning fuzzy PID
controller based on an EKF algorithm is proposed for the
attitude and position control of the quadrotor. The PID
gains are tuned using a self-tuning fuzzy algorithm. The
self-tuning of fuzzy parameters is achieved based on an
EKF algorithm. A smart selection technique and exclusive
tuning of active fuzzy parameters is proposed to reduce
the computational time. Dijkstra’s algorithm is used for
path planning in a closed and known environment filled
with obstacles and/or boundaries. The Dijkstra algorithm
helps avoid obstacle and find the shortest route from a
given initial position to the final position.

Keywords Quadrotor, PID, Fuzzy, Extended Kalman Filter,
Self-Tuning, Smart Selection

1. Introduction

A quadrotor is a cross-shaped aerial vehicle that is capable
of vertical take-off and landing. It has four motors, each

mounted per corner equidistant from the centre. The
synchronized rotational speed (ω) of all the motors is key
to the control of the quadrotor.Vertical motion results from
the simultaneous increase or decrease of the rotational
speeds of all the rotors. The motion along any direction
on the lateral axis is obtained by decreasing the rotational
speed of the rotors along the desired direction of motion,
and increasing the rotational speed of the rotors opposite
to the desired direction of motion. Moment produced by
rotation of rotors is used to initiate yaw. For instance,
clockwise yaw is initiated by simultaneously increasing
the rotation speed of the rotors creating a clockwise
moment, and decreasing the rotation speed of the rotors
creating counterclockwise moment. The motion of the
quadrotor is described schematically in figure 1.Control of
a quadrotor is a challenging task for the following reasons:
high manoeuvrability, high non-linearity, intensely
coupled multivariable and under-actuated condition with
six degrees of freedom and only four actuators.

A quadrotor is not a new concept. The first successful
hovering of a quadrotor was achieved in October 1920 by
Dr. George de Bothezat and Ivan Jerome [1]. Researchers
have designed and implemented numerous quadrotor
controllers such as PID/PD controllers, fuzzy controllers,
sliding mode controllers, neuro-fuzzy controllers and

Deepak Gautam and Cheolkeun Ha: Control of a Quadrotor
Using a Smart Self-Tuning Fuzzy PID Controller

1www.intechopen.com

International Journal of Advanced Robotic Systems

ARTICLE

www.intechopen.com Int. j. adv. robot. syst., 2013, Vol. 10, 380:2013

1 The School of Mechanical Engineering, University of Ulsan
* Corresponding author E-mail: cheolkeun@gmail.com

Received 17 Feb 2013; Accepted 13 Aug 2013

DOI: 10.5772/56911

∂ 2013 Gautam and Ha; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Deepak Gautam1 and Cheolkeun Ha1,*

Control of a Quadrotor
Using a Smart Self-Tuning
Fuzzy PID Controller
Regular Paper

www.manaraa.com

Figure 1. Basic motion of a quadrotor.

vision-based controllers. M. Santos et al. [2] proposed
an intelligent system based on fuzzy logic to control
a quadrotor. C. Coza et al. [3] used an adaptive
fuzzy control algorithm to control a quadrotor in the
presence of sinusoidal wind disturbance. The author
addressed a robust method to prevent drift in the fuzzy
membership centres. Y. A. Younes et al. [4] introduced
a backstepping fuzzy logic controller as a new approach
to controlling the attitude stabilization of a quadrotor.
The backstepping controller parameters were scheduled
utilizing fuzzy logic. M. H. Amoozgar et al. [5] proposed
an adaptive PID controller for fault-tolerant control of a
quadrotor helicopter in the presence of actuator faults. The
PID gains were tuned using a fuzzy interface scheme. A.
Sharma et al. presented and compared PID and fuzzy PID
controllers to stabilize a quadrotor. Other authors [6–8]
also addressed the fuzzy PID control algorithm to control
a quadrotor.

In this paper, modelling of a quadrotor, a control strategy
using a self-tuning fuzzy PID algorithm and path planning
using Dijkstra’s algorithm are presented. A dynamic
model is derived based on the Euler-Newton formulation.
All the drags, aerodynamic, Coriolis and gyroscopic
effects are neglected. The PID gain scheduling-based
control algorithm is proposed for attitude stabilization and
position control of the quadrotor. The tuning of PID gains
is performed based on the self-tuning fuzzy controller. The
tuning of the fuzzy parameters is performed using an EKF
algorithm. Smart selection of the active fuzzy parameter
followed by exclusive tuning of the active parameter is
proposed to reduce the computational time. A path
planning algorithm is proposed with two main objectives
in mind: obstacle avoidance and shortest route calculation
from any given initial position to the final position.
Finally, a series of simulation results and conclusions are
presented.

2. Mathematical Modelling

The mathematical model of the quadrotor is derived based
on the Newton-Euler formulation. Let E = {XE, YE, ZE}
denote an inertial frame and B = {XB, YB, ZB} denote a

Figure 2. Coordinate system.

body fixed frame. The body frame is related to the inertial
frame by a position vector (x, y, z) and three Euler angles,
(ϕ, θ, ψ) representing roll, pitch and yaw respectively. All
equations are expressed in the inertial frame. The vehicle is
assumed to be rigid and symmetrical. The centre of mass,
centre of gravity and origin of body axis are assumed to
be coincident. Let cϕ represent cos ϕ, and sϕ represent
sin ϕ. Similar notation is used for θ and ψ. The rotation
matrix from the body frame to the inertial frame E

BR for the
defined coordinate system is computed by multiplying the
three matrices E

BRX , E
BRY and E

BRX generated by rotations
about the XB, YB and ZB axes respectively.
E
BR = E

BRZ × E
BRY × E

BRX

E
BR =

cψ −sψ 0
sψ cψ 0
0 0 1

×

cθ 0 sθ
0 1 0

−sθ 0 cθ

×

1 0 0
0 cϕ sϕ
0 −sϕ cϕ

E
BR =

c θ c ψ − s ϕ s θ c ψ − c ϕ s ψ c ϕ s θ c ψ − s ϕ s ψ
c θ s ψ − s ϕ s θ s ψ + c ϕ c ψ c ϕ s θ s ψ + s ϕ c ψ
− s θ − s ϕ c θ c ϕcθ

(1)

The rotation of each rotor produces a vertical force towards
the ZB direction and moment is produced opposite to
the direction of rotation. Rotors are paired such that
the total moment created is cancelled out. The rotor
pair 2-4 produces clockwise moment, while the rotor
pair 1-3 creates counterclockwise moment. Experimental
observation at low speed showed that these moments are
linearly dependent on the produced forces. The equation
of motion can be written using force and moment balance
as shown in equation 2 [9–11]

ẍ
ÿ
z̈
ϕ̈
θ̈
ψ̈

=

E
BR

0
0

∑ Fi

−

K1 ẋ
K2ẏ
K3 ż

1
m −

0
0
g

l (F1 − F2 − F3 + F4 + K4φ̇) /IX
l
(
−F1 − F2 + F3 + F4 + K5 θ̇

)
/IY

(CF1 − CF2 + CF3 − CF4 + K6ψ̇) /IZ

(2)

where Mi = C × Fi , Fi is the force from individual motors,
Mi is the moment produced by rotation of the rotor for
i = 1, ..., 4, C is the constant relating moment to force,
m is the total mass of the UAV, g is the acceleration due
to gravity, Ki is the coefficient of the drag opposing the
motion of the quadrotor, for i = 1, 2, ..., 6. IX , IY , IZ are
the moment of inertia of the UAV with respect to XB, YB,

Int. j. adv. robot. syst., 2013, Vol. 10, 380:20132 www.intechopen.com

www.manaraa.com

ZB axes respectively. As the drags are negligible at low
speed, for convenience the drag coefficients are assumed
to be zero [9]. Moreover, inputs are defined as:

U =

U1
U2
U3
U4

 =

1
m

4
∑

i=1
Fi

1
IX

(F1 − F2 − F3 + F4)
1
IY
(−F1 − F2 + F3 + F4)

C
IZ

4
∑

i=1
(−1)i+1Fi

(3)

Substituting equation 3 to equation 2, the simplified form
of the quadrotor dynamics is obtained as presented in
equation 4.

ẍ = U1 (c ϕ s θ c ψ − s ϕ s ψ)

ÿ = U1 (c ϕ s θ s ψ + s ϕ c ψ)

z̈ = U1 (c ϕ c θ)− g
ϕ̈ = U2l

θ̈ = U3l
ψ̈ = U4

(4)

Likewise, the motor is modelled considering a small motor
with very low inductance and no gearbox. The motor
dynamics is given by equation 5 [10, 11]

Jω̇ = −KEKM
R

ω − dω2 +
KM
R

V (5)

where J is the propeller inertia, ω is the rotational speed,
KE is the back EMF constant, KM is the torque constant, R
is the internal resistance of the motor, d is the aerodynamic
drag factor and V is the motor input voltage.

3. Control and Path Planning Algorithm

3.1. Self-Tuning Fuzzy PID

A PID (Proportional-Integral-Derivative) controller is a
well-known feedback controller most widely used in
various types of plants and industries utilizing robotics
all over the world. A PID controller is simple and easy
to design which often results in satisfactory performance.
However, a PID controller has various limitations: the
fixed gains of a PID controller limits the performance
over a wider range of operating points. As a PID
controller is based on the linear model, non-linearity in
the system brings uncertainty and degraded performance.
It lacks learning ability and the adaptability necessary
to overcome nonlinearities and uncertainties. So, gain
scheduling of a PID controller based on self-tuning of
fuzzy parameters [12, 13] is proposed. The proposed
algorithm can be described as presented in figure 3. The
quadrotor is controlled using a PID algorithm. The
proportional, derivative and integral gains of the PID
controller are tuned using fuzzy logic. The fuzzy
parameters of the fuzzy algorithm are further tuned using
an EKF algorithm.

PID output is defined by,

UPID = kpe (t) + ki

∫
e (t) dt + kdė (t) (6)

Figure 3. Control algorithm structure.

where kp, ki, kd are PID gains, e (t) is error from reference
to response signal at time t. The PID gains ka are tuned
across range ∆ka based on the input variables error e (t)
and its first derivative ė (t) as given by equation 7

ka = ka_0 + Usig × ∆ka (7)

where ka_0 is the base value of the gain. Usig ∈ [0, 1] is the
normalized output from the sigmoid function defined as:

Usig =
1 − e−Uf

1 + e−Uf
(8)

where Uf is the output from fuzzy logic. Inputs to
the fuzzy logic are normalized on range [-1 1]. For
each input variables, five equal-sized isosceles triangular
membership functions are considered NB, NS, ZE, PS, PB
representing negative big, negative small, zero, positive
small and positive big respectively. The membership
function for each output is considered to be five singleton
values. Details of membership functions are represented
in figure 4.

Let, i and j represent the membership function index
for the first and second input variables. Three
vertices are used to define each of the triangular

membership functions.
(

a1/2,i/j, 1
)

be the top vertices,(
a1/2,i/j − b−1/2,i/j, 0

)
and

(
a1/2,i/j + b+1/2,i/j, 0

)

represent the base vertices. Each crisp input is fuzzified
according to equation 9 to obtain the membership grade
value f1/2,i/j for ith or jth membership function.

f1/2,i/j =

1 +
O f f seti/j

b−1/2,i/j

, i f 0 � O f f seti/j � −b−1/2,i/j

1 −
O f f seti/j

b+1/2,i/j

, i f 0 � O f f seti/j � b+1/2,i/j

0 Otherwise
(9)

Figure 4. a) Input membership functions b) Output singleton
values.

Deepak Gautam and Cheolkeun Ha: Control of a Quadrotor
Using a Smart Self-Tuning Fuzzy PID Controller

3www.intechopen.com

www.manaraa.com

where O f f seti/j = x1/2 − a1/2,i/j is defined as the distance
vector from the tip vortex of the triangular membership
function to the corresponding input x1 or x2 being error
and error rate respectively.

Based on experience, 25 fuzzy rules are defined for all
possible combinations of the inputs. These defined rules
are used for initial calculation and are later tuned based
on the system response. A minimum function is used to
define the connectives. The output membership grade is
obtained by equation 10.

µi/j = min(f1,i, f2,j) (10)

Defuzzification to the crisp value is done using the centre
of gravity method for singletons (COGS).

Uf =

5
∑

j=1

5
∑

i=1
µi,j × wi,j

5
∑

j=1

5
∑

i=1
µi,j

(11)

where wi,j is a weighted singleton value from rule table.
The fuzzy rules and membership functions are tuned
based on the EKF algorithm. The states in the EKF
estimation are as presented in equation 12

x(p/i/d)k =
[

a1/2,i/j b+/−
1/2,i/j wi,j · · ·

]T

k
(12)

Equation 13 describes the system model and the
measurement model.

{
xk+1 = f (xk) + wk

zk = h(xk) + vk
(13)

where xk represents the fuzzy states at sampling time k,
and zk is the measurement as obtained from the sensors.
wk and vk are the process and measurement noise which
are both assumed to be uncorrelated zero mean Gaussian
noises with covariance Qk and Rk respectively. Function f
is the state transition model used to compute the predicted
state from the current state estimate h represents the
measurement model with respect to the estimated states
which is as presented in equation 14.

h = QQd

[(
kp_0 + Usig × ∆kp

)
e ...

+
(

ki_0 + Usig × ∆ki

) ∫
e...

+
(

kd_0 + Usig × ∆kd

)
ė
]
+ AQd

(14)

where QQd is the quotient term to the inputs U1, U2, U3
and U4 as in the quadrotor dynamics equation 2. Similarly
the term AQd is the additive term in the equation 2. For
the extended Kalman filter, initial values of the states are
supposed to be known precisely thus setting the initial
error covariance (P−) to zero. The measurement model is
linearized using the Jacobian as expressed in equation 15.

Hk =
∂h
∂xi

∣∣∣∣
k
=

[
∂h

∂a1/2,i/j

∂h
∂b+/−

1/2,i/j

∂h
∂wi,j

· · ·
]∣∣∣

k
(15)

The term ∂h
∂a1/2,i/j

in equation 15 can be calculated as

∂h
∂a1/2,i/j

=

[
∂h

∂Upid

∂Upid

∂Usig

∂Usig

∂Uf

∂Uf

∂µi,j

∂µi,j

∂a1/2,i/j

]

k

(16)

where,
∂h

∂Upid

∣∣∣∣∣
k

=
hk − hk−1

Upidk
− Upidk−1

(17)

∂Upid

∂Usig
=

∆kp × e(t) f or p − Tuner

∆ki ×
∫

e(t) f or i − Tuner

∆kd ×
de(t)

dt
f or d − Tuner

(18)

∂Usig

∂Uf
=

2e−Uf

1 + 2e−Uf + e−2Uf
(19)

∂Uf

∂µi,j
=

5
∑

m=1

5
∑

n=1
µm,n

(
wi,j − wm,n

)

(
5
∑

m=1

5
∑

n=1
µm,n

)2 (20)

For
∂µi,j

∂ f1/2,i,j
= 1 (21)

∂µi,j

∂a1/2,i/j
=

∂µi,j

∂ f1/2,i,j

∂ f1/2,i/j

∂a1/2,i/j
=

sign
[

x1/2 − a1/2,i/j

]

b−/+
1/2,i/j

(22)

Similarly, the term ∂h
∂b−/+

1/2,i/j
in equation 15 is computed as

∂h
∂b+/−

1/2,i/j

=

[
∂h

∂Upid

∂Upid

∂Usig

∂Usig

∂Uf

∂Uf

∂µi,j

∂µi,j

∂b+/−
1/2,i/j

]

k

(23)

where the terms ∂h
∂Upid

, ∂Upid
∂Usig

, ∂Usig
∂Uf

, ∂Uf
∂µi,j

, are as defined in
equation 17, 18, 19 and 20

∂µi,j

∂b+/−
1/2,i/j

=
∂µi,j

∂ f1/2,i,j

∂ f1/2,i/j

∂b−/+
1/2,i/j

=

∣∣∣x1/2 − a1/2,i/j

∣∣∣
(

b−/+
1/2,i/j

)2 (24)

And the term ∂h
∂wi,j

in equation 15 is computed as

∂h
∂wi,j

=

[
∂h

∂Upid

∂Upid

∂Usig

∂Usig

∂Uf

∂Uf

∂wi,j

]

k

(25)

where, ∂h
∂Upid

, ∂Upid
∂Usig

, ∂Usig
∂Uf

are defined in equation 17, 18 and
19

∂Uf

∂wi,j
=

µi,j
5
∑

i=1

5
∑

j=1
µi,j

(26)

The Kalman Gain is computed as:

Kk = P−
k HT

k

(
HkP−

k HT
k + Rk

)−1
(27)

Measurement updates

x̂k = x̂−k + Kk
(
zk − h

(
x̂−k

))
(28)

Int. j. adv. robot. syst., 2013, Vol. 10, 380:20134 www.intechopen.com

www.manaraa.com

Figure 5. Flow diagram: EKF-Fuzzy-PID algorithm.

Error covariance

Pk = (I − Kk Hk) P−
k (29)

Project Ahead {
x̂−k+1 = x̂k

P−
k+1 = Pk + Qk

(30)

3.2. Smart Selection

Each of the p, i or d tuners has two inputs, five membership
functions for each input and 25 sets of rules. Thus, in
total 55 fuzzy parameters (i.e., 10 a1/2,i/j, 10 b+1/2,i/j,
10 b−1/2,i/j and 25 wi/j) are to be updated on every
sampling time for a single tuner. So, in order to control
six states using the PID controller, 990 fuzzy parameters
are to be tuned in each sampling time. This accounts
for excessive computational time and is a major problem
when simulating and implementing a self-tuning fuzzy
PID controller in a real system. However, only few of
the parameters have an impact on the fuzzy output value
- most of the parameters fall on the passive zone of the
fuzzy and have no effect on the output from the fuzzy.
Thus, smart selection and updating of the active fuzzy
parameters is proposed. The overall smart selection and
update process is as presented in figure 6.

The fuzzy parameter pool contains all the fuzzy parameter
values. The active fuzzy parameters are picked from the
fuzzy parameter pool, tuned using the EKF algorithm
and then the tuned values are updated back to the
pool. Initially, based on the crisp value of the inputs,
the active membership function index is determined (i.e.,
i=1...5, j=1...5, b+=1...5 and b−=1...5). Cross-referencing
the index value in the "Active Membership Function
Index" block and "Fuzzy Parameter Pool" block, the active
fuzzy parameters are picked. Thus, the picked active
parameters are declared as states for the EKF update and
thus proceeded to the tuning based on the EKF algorithm.
Likewise, the active membership function index value is
used to smartly pick the elements of the error covariance
matrix from the "Error Covariance pool" block. Now the
EKF update is performed as presented in equations 27, 28,
29 and 30.

Figure 6. Smart selection of active parameters and tuning.

The estimated states are then checked to see if they are
in the logical range by applying the range constrains.
Four different constraints are used to define the range
constraints. Firstly, the membership functions are
bounded within range of [-1 1]. Secondly, the order of
the membership functions are not compromised. Thirdly,
two and only two membership functions are overlapped
in the region between the first and the last membership
function. Finally, the region in the range [-1 1] and not in
between the first and last membership function should still
be defined. Applying these constrains helps maintain the
functional integrity of the defined fuzzy logic and avoids
the possibility of the occurrence of undefined zones in the
input region.

Thus, estimated states and error covariance matrix are
updated back to their corresponding pools and are made
available to be picked for tuning in the next sampling time.
The smart selection process reduced the fuzzy parameters
to be tuned from 55 to only 12. So, in controlling
the quadrotor position and orientation, the total fuzzy
parameters to be tuned are reduced from 990 to less than
217. The smart selection and exclusive update of the
active fuzzy parameters reduced the computational time
significantly.

3.3. Path Planning and Obstacle Avoidance

The goal of the path planning algorithm here is to identify
the shortest route from the quadrotor’s initial position
to any given final position while avoiding the obstacles.
Dijkstra’s algorithm [14] is adopted to perform the path
planning. It solves the single-source shortest path problem
in weighted graphs. The algorithm starts from a given
initial node, assigns it as current node and starts the
searches for the minimum weight node from the current
node. After iteration completion, the current node is
added to the explored node list. Again, assigning the node
with the lowest total weight as the current node, it starts
searching for the next minimum weight node for the next
iteration. By minimizing the weighted value, the total
distance of the route is minimized, thus the shortest route
avoiding the obstacles is obtained.

Let current node (i.e., node 8) be denoted by R(xR, yR)
and the current target node (i.e., node 5) be denoted by
T(xT , yT). The line pointing from the current node (8)

Deepak Gautam and Cheolkeun Ha: Control of a Quadrotor
Using a Smart Self-Tuning Fuzzy PID Controller

5www.intechopen.com

www.manaraa.com

towards the current target node (5), generalized as node
T(target) can be represented by the line vector.

vRT =

(
xR
yR

)
+ p

(
xT − xR
yT − yR

)
(31)

where
(

xT − xR
yT − yR

)
represents the direction of line vector.

Similarly, the wall (suppose 6-7 as in figure 7) can be
represented by the line vector. Let the wall be denoted
by points A(xA, yA) and E(xE, yE) respectively. The line
vector connecting wall AE can thus be represented as:

vAE =

(
xA
yA

)
+ q

(
xE − xA
yE − yA

)
(32)

where
(

xE − xA
yE − yA

)
represents the direction vector of the

wall. A dot product of the two vectors formed by the path
from the current node to the current target node and by the
walls/obstacles is used to make sure that the quadrotor
path does not intersect with the wall or obstacles. The
corresponding intersection point if it exists, is calculated
by equating vRT and vAE to obtain q. vRT = vAE, i.e., the
intersection point is common to both vectors

(
xR
yR

)
+ p

(
xT − xR
yT − yR

)
=

(
xA
yA

)
+ q

(
xE − xA
yE − yA

)
(33)

Dissecting the above equation results in two linear
simultaneous equations

{
xR + p (xT − xR) = xA + q (xE − xA)
yR + p (yT − yR) = yA + q (yE − yA)

(34)

Solving 34 to express q in terms of p:

q =
xR − xA + p (xT − xR)

xE − xA

q =
yR − yA + p (yT − yR)

yE − yA

(35)

Substituting 35 into 34 and rearranging we can obtain the
p.

Figure 7. Dijkstra’s algorithm: visibility check.

p =
(xE − xA) (yA − yR)− (yE − xA) (xA − xR)

(xE − xA) (yT − yR)− (yE − xA) (xT − xR)
(36)

Substituting equation 36 into equation 35 will allow for
q to be calculated. In the case of a vertical wall, i.e.,
xE − xA = 0, the first part of equation 34 should be used.
Similarly in the case of a horizontal wall, i.e., yE − yA =
0, the second part of equation 35 should be used. In
the case of non-vertical and non-horizontal walls, either
the first part or the second part of equation 35 can be
used. The boundary restriction from the quadrotor to the
obstacle/wall is also taken into account. The restriction
includes the quadrotor dimensional restriction that is
from the centre of mass of the quadrotor to its arm end
and additional restriction to allow the quadrotor enough
space to fly safely in the case of some path deviation.
Using a combination of the proposed controller scheme
and Dijkstra’s algorithm, the quadrotor can find its own
optimal path from the given initial position to the final
position in an environment with obstacles.

4. Simulation

The simulation of the proposed dynamics, control
algorithm and path planning algorithm is performed using
the Matlab/Simulink environment. The simulation block
of the quadrotor system is as presented in figure 8.

The task block contains the task or the command for the
quadrotor to follow. The task is provided to the Dijkstra
algorithm block to compute the optimal path. The optimal
path is then provided to the controller block via the
command feeder. A total of six controllers are used to fully
control the quadrotor. Four of them, namely Z controller,
Phi controller, Theta controller and Psi controller, together
form the inner loop control and are the basic controllers
used to stabilize the quadrotor. It steadies the attitude of
the quadrotor while stabilizing the height [11, 15]. The
remaining two controllers, the X controller and the Y
controller, form the outer loop control. The outer loop
control helps to navigate to desired position by providing
the desired pitch and desired roll angle for the inner loop
control to track down. The wind model available in
Simulink library is used to model the wind blowing with a

Figure 8. Matlab/Simulink model of the system.

Int. j. adv. robot. syst., 2013, Vol. 10, 380:20136 www.intechopen.com

www.manaraa.com

velocity of 1m/s opposite to the XE axis. The uncertainty
on the other hand is imposed on the rotational speed of the
motor as described in equation 37

ωi = ωi_desired + N(0, 10) (37)

5. Result

The simulation results of the quadrotor with integrated
motor dynamics controlled using a self-tuning fuzzy PID
controller, show it to be capable of performing path
planning as presented in the figures and tables to follow.
Figure 9, 10, 11 and 12 shows the waypoint following
performance of the PID controller and the EKF fuzzy PID
controller. The initial oscillation on the theta response
in figure 11 is the result of the imposed wind model
acting opposite to the x axis. Table 1 shows a comparison
of performance between the two controllers, where the
term "total error" is defined by the sum of the absolute
positional error during the whole waypoint following
mission. Figure 13 to figure 17 are used to show
the performance of the EKF fuzzy PID controller while
following the optimal path as calculated from Dijkstra’s
algorithm. The Matlab simulation (Figure 13), Virtual
reality simulation (Figure 14), PID parameter tuning
(Figure 15 and figure 16) and fuzzy parameter tuning
(Figure 17) are displayed.

Figure 9. Waypoint following PID.

Figure 10. Waypoint following EKF fuzzy PID.

Algorithm Maximum Error [m] Total Error [m]
PID 0.35 33.6

EKF Fuzzy PID 0.10 9.3

Table 1. Performance comparison table: waypoint following.

Figure 11. Attitude plot: Waypoint Following: EKF Fuzzy PID.

Figure 12. Voltage plot (Controlled input): Waypoint Following:
EKF Fuzzy PID.

Figure 13. Path Planning EKF Fuzzy PID.

Deepak Gautam and Cheolkeun Ha: Control of a Quadrotor
Using a Smart Self-Tuning Fuzzy PID Controller

7www.intechopen.com

www.manaraa.com

Figure 14. Virtual reality simulation using Matlab/Simulink.

Figure 15. Tuning of PID gains: Y controller: Path Planning.

Figure 16. Tuning of PID gains: Phi Controller: Path Planning.

Figure 17. Fuzzy membership function tuning (at t=85 sec): Path
Planning.

6. Conclusion

The quadrotor was successfully controlled using PID
gain scheduling based on an EKF algorithm. The
stability control, waypoint following and path planning
were successfully simulated. The self-tuning fuzzy
PID controller showed good resistance to the induced
disturbance and the uncertainty. It adapted to the wind
and disturbance quickly and provided significantly better
performance as compared to a simple PID controller. The
obstacle avoidance and waypoint following performance
was enhanced using the self-tuning fuzzy PID controller.

7. Acknowledgment

This work was supported by the 2013 Research Fund of
University of Ulsan.

8. References

[1] A. Gessow, G. Myers (1967) Aerodynamics of the
helicopter. Frederick Ungar Publishing Co. New
York.

[2] M. Santos, V. Lopez, F. Morata (2010) Intelligent
fuzzy controller of a quadrotor. International
Conference on Intelligent Systems and Knowledge
Engineering (ISKE). pp.141-146.

[3] C. Coza, C. J. B. Macnab (2006) A New Robust
Adaptive-Fuzzy Control Method Applied to
Quadrotor Helicopter Stabilization. Annual
Meeting of the North American Fuzzy Information
Processing Society. pp.454-458.

[4] Y. AI-Younes, M. A. Jarrah (2008) Attitude
stabilization of quadrotor UAV using Backstepping
Fuzzy Logic and Backstepping Least-Mean-Square
controllers. International Symposium on
Mechatronics and its Applications. pp.1-11.

[5] M. H. Amoozgar, A. Chamseddine, Y. Zhang (2012)
Fault-Tolerant Fuzzy Gain-Scheduled PID for a
Quadrotor Helicopter Testbed in the Presence of
Actuator Faults. IFAC Conference on Advances in
PID Control.

Int. j. adv. robot. syst., 2013, Vol. 10, 380:20138 www.intechopen.com

www.manaraa.com

[6] A. Sharma, A. Barve (2012) Controlling of
Quad-rotor UAV Using PID Controller and Fuzzy
Logic Controller. International Journal of Electrical,
Electronics and Computer Engineering. 1(2):38-41.

[7] T. Sangyam, P. Laohapiengsak, W. Chongcharoen, I.
Nilkhamhang (2012) Path Tracking of UAV Using
Self-Tuning PID Controller Based on Fuzzy Logic.
SICE Annual Conference. pp.1265-1269.

[8] G. Szafranski, R. Czyba (2011) Different Approaches
of PID Control UAV Type Quadrotor. Proceedings of
International Micro Air Vehicles Conference. 11.

[9] E. Altug, J. P. Ostrowski, R. Mahony (2002) Control
of a Quadrotor Helicopter Using Visual Feedback.
IEEE International Conference on Robotics and
Automation. 1:72-77.

[10] S. Bouabdallah, R. Siegwart (2005) Backstepping
and Sliding-mode Techniques Applied to an Indoor
Micro Quadrotor. IEEE conference on Robotics and
Automation.pp.2247-2252.

[11] Tommaso Bresciani (2008) Modelling, Identification
and Control of a Quadrotor Helicopter. Master
Thesis, Lund University, Lund, Sweden.

[12] K. K. Ahn, D. Q. Truong, T. Q. Thanh,
B. R. Lee (2008) Online self-tuning fuzzy
proportional-integral-derivative control for
hydraulic load simulator. Institution of Mechanical
Engineers Part I Journal of Systems and Control
Engineering. 222(12):81-96.

[13] K. K. Ahn, D. Q. Truong (2009) Online tuning fuzzy
PID controller using robust extended Kalman filter.
Journal of Process Control. 19(6):1011-1023.

[14] E. W. Dijkstra (1959) A note on Two problems in
Connexion with Graphs. Numerische Mathematik.
1:269-271.

[15] M. Orsag, M. Poropat, S. Bogdan (2010) Hybrid
Fly-by-Wire Quadrotor Control. Automatika.
1:19-32.

Deepak Gautam and Cheolkeun Ha: Control of a Quadrotor
Using a Smart Self-Tuning Fuzzy PID Controller

9www.intechopen.com

www.manaraa.com

© 2013. This work is published under
http://creativecommons.org/licenses/by/3.0/(the “License”). Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.

